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Inference from Discrete Life History Data: a 
Counting Process Approach 

DEBASIS SENGUPTA 

Indian Statistical Institute, Calcutta 

S. RAO JAMMALAMADAKA 

University of California, Santa Barbara 

ABSTRACT. This paper outlines the scope of the counting process techniques for life history 
data in the discrete time set-up. We give a weak convergence theorem for discrete martingales. 
The convergence is in the space of all real sequences endowed with the Frechet metric, as the 
number of subjects go to infinity. While some results are easier to derive than in the continuous 
case, the possibility of multiple jumps causes complication. Subsequently the issues of estimation, 
testing and regression are discussed. Relationship of the present framework with the other works 
in this area is also pointed out. 

Key words: multivariate counting process, martingale, invariance principles, regression models, 
non-parametric inference, parametric inference 

1. Introduction 

Since the first use of the counting process theory for the analysis of life history data by Aalen 
(1975, 1978), several researchers have advocated a discrete time formulation of the same. The 
two major arguments against continuous time set-up are as follows. The counting process 
approach demands accurate observation of time, as pointed out by Arjas (1985). Inaccuracy 
of measurements sometimes leads to tied event times, which is treated in an ad hoc manner. 
Secondly, grouping of data over a time interval is often necessary because of cost and feasibility 
considerations. This makes the continuous time results unsuitable for direct application. A third 
argument which can also be used is that discrete data may arise naturally in machines such 
as computers and computer-controlled devices which operate with a digital clock. 

Hjort (1985) considered grouped and partially censored survival data. He obtained the exact 
maximum likelihood estimator of the discrete time cumulative failure rate, and suggested that 
its distribution should be closely related to that of the Nelson-Aalen estimator when the bin 
width goes to zero at a suitable rate, as the number of subjects go to infinity. In a subsequent 
paper (Hjort, 1990b) he dealt with non-parametric Bayes estimators in this context. Arjas & 
Haara (1987) investigated a discrete time logistic regression model. They established the 
asymptotic normality of the regression coefficient estimators via a martingale convergence 
theorem, as the observation time goes to infinity. The authors used this approach again for 
a generalized Cox regression model; see Arjas & Haara (1988). 

The approach taken in this paper is similar to that of Hjort (1985), although we do not 
make any assumption about the origin of the discrete data. The asymptotic arguments, as the 
number of individuals go to infinity, follow directly from a discrete martingale invariance 
principle. Since the data need not be the sampled version of a continuous process, the time 
interval between the discrete points is not assumed to go to zero. 

2. The multiplicative intensity model in discrete time 

Let (Q, .', P) be a probability space and for i = 1, 2,...,n and h = 1, 2,...,H, 

{ALih(k)J}k I be a family of stochastic processes defined on (Q, F), having discrete parameter 
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k and state space {0, I}. [Henceforth we shall denote all deterministic and random sequences 
on N with a dot in the argument.] Let Fn, o = {I, Q} and Fn, k be a sub-a -algebra of E with 
respect to which {ALih(1)J} 1 / k are measurable for each i and h. We further define 
ANnh(k) = Sin= 1 AL1h(k) and Nnh(k) = I ANnh(l). The process Nnh( ) can be thought of as 
a "counting" process with the discrete time parameter. The index n indicates the aggregate 
over n individuals, while h represents the type label. We impose the following restriction on 

ALih(-): 

H 

(Al) E ALih(k) < 1 for each k e N. 
h = 1 

This assumption says that the same individual can not have two different types of jump at 
the same time. We can define the predictable process tnh( ) as 

/(nh(k) = E[ ANnh (k) I En, k - I I] (2.1) 

This process is analogous to the stochastic intensity of a usual counting process. In the same 
manner as Aalen (1978) we postulate that 

E[ ALih (k) I En k - I ] = ?ch (k)Xih (k) a. s. (2.2) 

where for each h, Xlh( ), . . ., Xnh( ) are predictable binary processes which are independent 
and identically distributed. On the other hand, the deterministic sequence Xh( ) is 

JP[ALih(k) = 1 I Xih(k) = 1] if P[Xih(k) = 1] 0 

0hk 
={ otherwise 

for any i. We put the following extra condition on Xih(k): 

(A2) There is a partition {Hl, H2,. . . X Hm } of the set { 1, 2, . . ., H} such that the following 
holds: 

_ I if gecH~, 
Xih(k) = 1 and h & Hr implies Xig(k) - {0 if g eH, s r. 

This means the types of jumps can be grouped in such a manner that an individual can be 
ready for only one group of jump types at a time. This is a very reasonable assumption that 
helps simplify the likelihood expression in section 4. 

From (2.2) it follows that 

;fnh (k) = ah(k)Ynh(k) a.s., (2.3) 

where Ynh(k) = En= I Xih(k), the number (out of n) of individuals ready for a type h jump at 
time k. We shall call Xh ) the deterministic intensity of type h transition. The above is similar 
to the celebrated multiplicative intensity model (Aalen, 1978). The crucial difference of the 
above model with Aalen's model is that while the time parameter in the latter is allowed to 
take values in an interval of the form [0, T], no restriction of finiteness is necessary on the 
discrete time here. Further, multiple jumps of the process Nnh( ) are allowed. In this respect 
it is comparable to Johansen's (1983) extension of the Aalen model. Notice that a specific 
decomposition of the processes ANnfh() and Ynh( ) has been used here. We do not assume 
that the processes ALih( ) and Xih(Q) for different individuals are i.i.d. This assumption will 
sometimes be made explicitly in order to simplify formulas. 

We conclude this section with the discrete time versions of two examples from Andersen 
& Borgan (1985). 
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Example 1. Survival data with random right-censoring. Suppose that i.i.d. censored lifetimes 
of n individuals are denoted by TI, T2,. . ., T,. These are assumed to be positive and 
integer-valued, while any unit of time can be used. Let D1, D2, . . ., Dnbe the corresponding 
censoring times. For 1 < i < n and each k E FE we define ALi (k) to be the product of the indicator 
variables I(Ti = k) and I(Dj > k), and assume that the pair of indicator variables is measurable 

Fn k . The subscript h is dropped for simplicity. Then (2.2) holds with Xi (k) = I(Ti >, k, Di > k). 
One can interpret Yn(k) as the number of individuals at risk at time k. If the censoring time 
and the notional lifetimes are independent, a(k) is the discrete hazard rate. 

Example 2. Finite state Markov chain. Suppose we have n samples from a discrete parameter 
Markov chain with a finite number of states and having H possible types of transition. For 
h = 1, 2, . . , H, i = 1, 2, . . ., n and k E RW we define ALih(k) as the indicator of the event 
that a "type h" transition occurs to individual i at time k. Thus ath(k) becomes a transition 
probability. Note that the assumption (A2) holds here with m equal to the number of 
non-absorbing states in the Markov chain and the set Hr represents the indices of types of 
transitions that are possible from the rth non-absorbing state. In the special case of competing 
risk data, ALih(k), Xih(k) and a(k) are the indicator of death from cause h, the indicator of 
being alive (irrespective of h) and the discrete cause-specific hazard rate, respectively. Similar 
interpretations can be given in the special case of the illness-death model. 

3. Weak convergence of discrete martingales 

We are interersted in the convergence of "discrete martingales" in the space of all real sequences 
S endowed with the Fr6chet metric, 

P(x( ) ()) E 2-k Ix(k) -y(k) I ( ) (j S 
k c-N Il+ x(k) -y(k) I' x)y)S 

Several properties of the metric space (S, p) are listed below. Sketches of proof may be found 
in Billingsley (1968, pp. 218-219). 

Lemma 3.1 
(a) A sequence in (S, p) converges if and only if all its coordinates converge with respect to 

the Euclidian metric. Further, the limits of the coordinates are the coordinates of the limit. 
(b) The space S is complete and separable with respect to the metric p. 
(c) A subset T of S has a compact closure if and only if there is a positive sequence b( ) such 

that x E T implies Ix(k) I < b(k). 

Let .9 be the Borel a-algebra on S. Since (S, .) is complete and separable, tightness of a 
sequence of probability measures on this space is equivalent to its relative compactness, by 
Prohorov's theorem. The characterisation of compact sets given above allows us to relate the 
convergence of a sequence of probability measures to the convergence of its finite dimensional 
marginals. In the following, we denote convergence in distribution (in the above space) and 
in probability by "=> " and " ", respectively. Let {Q, .F, P} be a probability space. Suppose 

for each i, X&() is a mapping from Q to S, and Z( ) is another such mapping. Then we have 

Theorem 3.2 
(a) Suppose for all q E (0, 1) there is a positive real sequence b( ) such that 

inf P(jXn(k)J I b(k) for all k E N) > 1 -i. (3.1) 
ne 1N 
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Then Xn() ) Z(-) if and only if for each n e N and each subset {il , ir } of F\, the 
sequence of randon vectors {Xn(i1), Xn(i2), Xn(r) } converges to {Z(i ), Z(i2), 

Z(ir)} as n -+ oo. 
(b) p(Xn(-), Z(-)) 0, that is, Xn() $Z() if and only if X (k) AZ(k)for each k eF N. 

Proof of part (b) can be found in Jammalamadaka & Sengupta (1990). 
Now we take a triangular array of random variables { n, k; k = 1, . . ., rn; n = 1, 2,... } on 

the probability space. For each n and k, Xn k iS measurable with respect to sn k, a 
sub-a-algebra of F satisfying Fn k -1 C En k We assume that the above array is a martin- 
gale difference array, that is, Ek - k = E(4n k I Fn k- = 0 a.s. We consider the weak 
convergence of the sum Xn(k)= _(k) = 1 where r1nJ() is an integer-valued nondecreasing 
sequence with rn( 1) ) 0. 

Theorem 3.3 
Let the martingale difference array satisfy 

(a) nknE k l Ekl,kI( , >,?) , )for all e > 0. 
(b) - E 2 k S 2(k) for each l20, where r() is a sequence in e2 

Then Xn( ) => k)1 T(k)zk, where Z1, Z2... are i.i.d. standard normal random variables. 

Proof. The continuous time version of this theorem was given by Aalen (1977, see theorem 
A.1 there) as a generalization of corollary 3.8 of McLeish (1974). In fact one can easily 
obtain discrete equivalents of McLeish's theorem 3.2, theorem 3.6 and corollary 3.8, from 
which the above follows. The only difference is in the condition for tightness of the sequence 
Xn(j), which is given in (3.1). Notice that 

rn (k) 

LHS of (3. 1) > 1- sup E P[ IXn (k) I > b(k)] >, 1-sup E b -2(k)E E 2n1 
nfE N kE N n E kN kE= 

As in McLeish (1974), we can work with a simple modification of the array which makes 
E ErI-(k) / 2 converge, so that it is bounded. Hence the right hand side above can be made 
smaller than 1- E- N j2-k by suitably choosing b(k). Thus the tightness condition is verified 
rather easily in the discrete set-up. The remaining part of the proof is as in McLeish (1974) 
and Aalen (1977). We omit the details. 3 

For a multivariate generalization of theorem 3.3, we take {J(hk; k = 1, ...,rn;n 

2,... }, for h = 1, . . ., H. These are martingale difference arrays with respect to the array of 

a-algebras {,n, k}. Let XA(k) and t k be vectors (of size H) of the corresponding 
unidimensional quantities. We indicate the transpose of a vector with a prime. The product 
topology is used in the space of vector sequences. 

Theorem 3.4 
Let the martingale difference arrays satisfy 

(a) Ek- I kIn, k n, k (Nn, k n, k > E) - for all 
or 

(a') hI Ek I ]2I(|t| > ?) A 0 for all ? > 0 and h = 1, . H. 

and 

(b) Ek= I' Ek In k nk k T(k)T(k)' for each 1 > 0, where each component of T(k) 
(which is H x H) is a sequence in f2. 

Then X,,() => Y)E- 1 T(k)zk, where z1, z2... are i.i.d. random vectors with distribution N(0, I). 
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Proof. Condition (a') is easily seen to follow from condition (a). The converse is proved 
by induction on the order of the vector. Under the stated assumptions we observe that by 
virtue of theorem 3.3 X(h)( ) S- l (e' T(k)T(k)'eh) 1/2Z h), where eh is the hth column of the 
H x H identity matrix. Thus for each h the family of distributions of X(h)( ) is relatively 
compact and hence tight. Since H is finite, Xnt() itself is tight (see Billingsley, 1968, p. 41). 
Therefore it is enough to show convergence of the finite dimensional distributions. Following 
Aalen (1977), we can use a Cram6r-Wold argument via Un, k = Ehc= I Ch(rn -(k))4n , where 
c (). cH(-) are /, sequences satisfying EY4 I ICA(k)I < 1 for each k. Although orthogonal- 
ity of the martingales has not been assumed, we can argue that 

r, (I) r, (I) 

Ekl Uk =(k))Ek (k)) 
k=l k=l 

= Z c'(k)[Dn (k) - D (k- )] c(k) 
k =I 

[where Dn() =-Ekr') Ek1I ({n, k n', k )] 

E c'(k)T(k)T(k)'c(k). 
k = I 

Thus Un k satisfies condition (b) of theorem 3.3. The rest of the argument is similar to that 
of Aalen (1977) and hence is omitted. a 

Remark 1. In the above theorem, Xrn(L) Ek _ 'IJ(h) 4(g)4 is not assumed to converge (in 
probability) to 0 for h :Ag. We can not afford to make this simplistic assumption in the 
discrete case. 

Remark 2. Alternative sets of conditions similar to those of theorem 3.3 of Helland (1982) 
can also be proved to suffice. 

4. Non-parametric maximum likelihood estimation 

4.1. The maximum likelihood estimator 

The likelihood function is 

H n H I - Y-FI= ALih (k) 

keN L{hi1 }I ANnh (k) fj 1 (_ h h c(k)Xh(k) ]. (4.1) 
k c-N h = I i = I h = I 

In view of assumption (A2), the likelihood function reduces to 

m \Ynhr (k) - Yh X- Hr ANnh (k) 

Nf i L{hI(k) nh( Z1 Y E h (k)) , (4.2) 
keF-N r= I- h cHr h EH, 

where hr is any member of Hr. The likelihood (4.2) is evidently maximized by the estimator 

cnh (k) = Jnh (k) Y,-hl(k) ANnh (k), (4.3) 

where Jnh(k) = I(Ynh(k) > 0). It is interesting to note that the maximisation of the likelihood 
function is much more difficult in the continuous time case (see Karr, 1987) unless the model 
is modified in some manner (Johansen, 1983; Jacobsen, 1984). We emphasize the importance 
of assumption (A2) here. Since it holds in most practical situations, maximisation of (4.1) 
becomes unnecessary. 
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From (4.3) one can also find the MLE of the discrete cumulative intensity AA(k) (given 
by a h(l)). Its computational form coincides with that of the Nelson-Aalen estimator 
(Aalen, 1978). In the case of survival data with independent notional life and censoring 
times, the non-parametric ML or Kaplan-Meier estimator of the survival function is given 

by rli ki lk (1 - c(X(k)) where kl, k2, . are the times of observed death. When transformed 
to get an estimator of the hazard rate, it produces (4.3), as expected. It is also not 
surprising that Hjort (1985, 1990b) found (4.3) to be the MLE of o() in this special case. 

4.2. Bias of the MLE 

Note that 

cnh (k) - Ch (k) = Jnh (k) Y -h(k) AMnh (k)-( -Jnh(k))ah(k), (4.4) 

where AMAl(k) = ANnh(k) - )nh(k) is a martingale difference with respect to the filtration 

{Fn, k }k* 1 It follows that 

E[&nh (k) -h (k)] =-ah (k)P[ Ynh (k) = 0]. 

Thus the estimator has a finite negative bias (unless Ynh(k) > 0 a.s.). In the i.i.d. case 
P[ Ynhh(k) = 0] = Pn[Xlh(k) = 0] and hence the bias goes to 0 at an exponential rate as 
n -- oo. 

4.3. Consistency 

By virtue of theorem 3.2(b), a sufficient condition for the convergence (in probability) of 
each coordinate to the desired value will guarantee consistency. Jammalamadaka & Sen- 
gupta (1990) have used mean square convergence as a sufficient condition. In the i.i.d. case 
the mean squared error is 

Oc (k)P [XIh(k) = 0] + Oth(k)( 1 - Ch(k)) 
I . (, )Pi[xlh(k) = i]Pn [X1h(k) = 0]. 

The above is identically 0 when P[XlI(k) = 1] =0. Otherwise the second term is upper- 
bounded by 2n - 1Uxh(k)( 1- oC(k))IP[Xlh(k) = 1]. This establishes the required mean square 
convergence. 

4.4. Asymptotic normality 

Let anh Jnh (k)a(k), A* (k) = n*h (1) and Anh (k) = 1nhi(l). Then 

k 

Anh(k) -A* (k) = Z Jnh(l)Yn1 (I) AMh(l). 

Convergence of a properly scaled version of this martingale in the univariate and multivari- 
ate cases follow from theorems 3.3 and 3.4, respectively. However, the theorems are not 
suggestive of any obvious estimator of the mean squared error. This is a difficulty which is 
exclusive to the discrete case. The limiting covariance function will depend on the structure 
of dependence among individuals. In the special case of i.i.d. individuals we have the 
following covariance function 

k 

E[n(Anfh(k) - A *(k))(Ang(k) - A *g(k))] = Z Tgh(k), 
I = 1 
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where 

ah (k)(I L-sth(k))IE[Xlh(k)I if g = h, 
Zhg(k) = Oah(k)ag(k)1E[Xlh(k)] if g #h, h,g EHr for some r, 

(0 ifg#Ah, hEHr, geHs, s#Ar. 

That Thg (k) is not necessarily 0 for g =# h underscores the complications arising from 
different kinds of jumps being allowed to occur (to different individuals) at the same time. 
The covariance can be consistently estimated by replacing oa*(k) and axg(k) by their respec- 
tive MLE's and E[Xlh(k)] by n-lYnh(k) in the above expression. We call this estimator 
T^ngh(k) for future reference. 

If AMlh(k) is taken as a sum of i.i.d. random variables, one can actually establish the 
asymptotic normality of n(2nfhn(-)- *nh). This may be done via a usual multivariate 
central limit theorem, which applies to the finite dimensional marginals, and making use of 
theorem 3.2(a). It may be possible to work in this set-up with a weaker assumption than 
i.i.d. 

5. Other estimators 

5.1. Smoothing of the nonparametric estimator 

The maximum likelihood estimator may need smoothing in order to appear realistic, 
especially when the jumps of Nnh(-) are sparse. Let us consider the unidimensional case for 
simplicity. One may use a kernel estimator (as in Ramlan-Hansen, 1983) of the form 

k+L ANn (l) 
Q,K (k) = , K(k -I ) 1 ) (5.1 ) 

I = k -L n (1) 

where K( ) is suitable kernel function having support on a suitable window { -L, 
- L + 1, . . ., L} and satisfying IL= -L K(k) = 1. The above estimator falls within the 
purview of theorem 3.3 and hence does not need a separate discussion of asymptotic 
normality. Note that it is a consistent estimator of 

k+L 

ac(k)= E K(k-I)a*(l), 
I=k-L 

which will in general be different from a(k). Since we can not assume L -+ 0 in the discrete 
case, the kernel estimator will be biased, even asymptotically. However the local averaging 
will reduce the variance for small sample size when the "true" ac() varies slowly compared 
to the window width 2L. 

5.2. Parametric estimator 

Let ah(k) be a differentiable function of the parameter vector 0. Gradient of the log-likeli- 
hood (up to time ko) with respect to 0 is 

U(0 m = E E[E N (k) Z ( (Y g E , k) 
k=1 r=1 

L ah ANfl(k)rcL-tkh (k) h k)H 0 -_ ANcx ;(k)) 
L ~~~~~~~~~~~~~~~g e- 14 
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Upon simplification, this becomes 

ko1m aXh(k) AM,,(k) I AMng (k) 
U(O, ko)=Z Z Z + 

k=lr=lhEFHr o (hk) 1 E Xg(k) L ~~~~~g e H 

+ Y nk(k) - 0 
IXA IiXg k 

g e Hr 

where c4?(-) is the true value of h(J-), corresponding to the true parameter vector 00. Clearly 
U(00, ) is a discrete martingale. It follows that if ok maximizes U(0, k), then U(6, -U(0, 0) 
is a martingale. Now one can do a Taylor series expansion of the score function around 00, as 
in Andersen & Gill (1982), in order to establish the asymptotic normality of the MLE of 0. 

6. Tests of hypotheses 

6.1. The one-sample problem 

Suppose a?, . . .H I are specified sequences and we want to test 

t0: ah =La*, h=l1,2,..,H. (6.1) 

One can use Tnh = ,n Sk > I Wh, (k)(infh(k) - Jnh (k)x5h(k)) for this purpose, where Wnh( ) are 
predictable sequences converging to (possibly unknown) non-random real sequences for each 
h. The covariance of Tlh and Tng can be estimated by Xk- Wng(k) Wnh(k)Tngh(k). [The 
consistency of ingh(k) is known only in the i.i.d. case.] Thus one can form an asymptotically 
normal statistic for H = 1 and asymptotically 2 -distributed statistic for H> 1. The 
development here is along the lines of the continuous time case (see Hjort, 1990a). 

6.2. The K-sample problem 

Suppose N(1) . . K) are independent H-variate counting processes and we want to test 

0~'o- o h ( ) = )(h) = 
- 

* * A(K)(.) h = 1,2,...,H. (6.2) 

Following Aalen (1978) one can combine the samples and compare the pooled estimator of 

Xh( ) with the estimator from individual samples. The reader is referred to Jammalamadaka 
& Sengupta (1990) for a detailed discussion of the resulting test statistic. 

In the special case of K = 2, the statistic U, = T'C, UT, can be used, where the compo- 
nents of Tn and C,, are given by 

Tnh = n Z Wnh (k)(Q n I(k) - n2 (k)), 
k1 I 

Cnhg = Z Wnh(k)Wng(k)(Qn('ihg(k) + 12 hg(k)), 
k I 

where JVnh(-) is a weight function as before. The asymptotic distribution of Un is x2, 
The above test was applied to the data on mating rates of "Ebony" and "Oregon" flies, 

which was also examined by Aalen (1978). The data consists of time measured in seconds 
from introduction in control chamber to the initiation of mating. Since the measurements are 
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discrete, the method discussed here is directly applicable. The statistic U, produced two-sided 
p-values of 3.1 x I0-4 and 2.5 x 10-6 for Wn(k) =n YY(l)(k)Yn(2)(k)/EYn()(k) + Y(2)(k)] and 
W (k) =n-2Yln)(k) Y(2)(k), respectively. Thus the hypothesis of equal (discrete) mating rates 
is rejected. 

6.3. Other tests 

In the same manner as above, one can formulate a test for the equality of components or 
groups of components of a multivariate intensity function. The asymptotic results of section 
3 will again be useful. An important potential application of this test is in comparing 
cause-specific hazards of competing risks. 

Another hypothesis of interest in the context of two samples is a(2)() O xa(')(-) for some 
unknown 0. A starting point would be to define the estimator 

Z 
W,(k) (2)(k) 

k I 

X n(k) A M,(k)' 
k) I 

where Wn( ) is a suitable weight function. The asymptotic normality of n(O, w - 0) is easy 
to establish, while a computational formula for the asymptotic variance can also be obtained 
routinely. This gives a test for a (2) = 6a o for fixed 60. A reasonable statistic for the original 
problem is n Skkl Mn(k)(d$2)(k)-An WQ(V)(k)) where Mn() is another weight function. 
Further details of these tests may be found in Jammalamadaka & Sengupta (199O). 

A hypothesis of the form (1 -a (2) ()) = (1- ()( ))0 comes naturally in the discrete 

proportional hazards model. A more general problem than this will be discussed in the next 
section. 

7. Regression models 

Analysis under the semiparametric regression models in the discrete set-up is difficult because 
of the presence of the "baseline hazard". We do not know of any partial likelihood 
formulation in this context that would be a function of the regression parameters only. 
Attempts have been made to approximate the baseline hazard by piecewise constant and 
other simpler forms. This essentially reduces the model to a completely parametric one. For 
simplicity we consider such a parametric model in the unidimensional case only, and drop the 
subscript h accordingly. 

As in subsection 5.2, consider the likelihood up to time ko. Let 0 = (0'y')' indicate the 
vector of all parameters, including those used to model the baseline hazard (y) and those used 
for regression (F). Further, let zi (k) be the (predictable) covariate process of the ith 
individual. After some computations, the gradient of the log likelihood turns out to be 

k-, 
o I, iE lo0g 1-( .k){AL (k) - o(k, zi (k))Xi (k)} (7.1) k=lIit I -o 1 - c4k, zi(k))j_ 

Thus U(0, ) is a martingale when evaluated at the true value of 0. This leads to the proof of 
asymptotic normality of the MLE's. 

As an example, consider the part of the score vector that corresponds to P. In the special 
case of the proportional odds ratio model (see Kalbfleisch & Prentice, 1980, p. 37) the quantity 
in the squared bracket simplifies to zi (k). In the case of the discrete proportional hazard model 
[ - aX(k, zi (k))] = [ - _O(k)] exp (fl'zi (k)) it becomes a(k, zi (k)) -1 exp (#'zi (k)) log [1 - xo(k)]zi (k). 
This can be further simplified when the only covariate is the group indicator. 



60 D. Sengupta and S. R. Jammalamadaka Scand J Statist 20 

In each of these cases, one can also construct tests of the hypothesis f = 0. The expressions 
for the information matrix are not given here. Presence of the nuisance parameter y would 
complicate the structure of the information matrix, making it take the form of a Schur's 
complement. 

8. Concluding remarks and scope of further work 

A weakness of the formulation used here is that a consistent estimator of the mean squared 
error is easily found in the i.i.d. case only. If the i.i.d. assumption is dropped, some other 
condition involving the nature of dependence will be needed to ensure consistency. In the 
continuous time formulation this problem did not arise because simultaneous jumps of 
different individuals was ruled out. While the present formulation is more realistic, one has 
to look for meaningful departures from the i.i.d. assumption in order to expand the scope of 
the results. 

The work of Hjort (1985, 1990b) should also be followed up. Since the discrete process is 
explicitly assumed to be the sampled version of a continuous process in his formulation, 
stronger results (such as uniform consistency of the kernel estimator) may be obtained. One 
may also try to show theoretically if the discrete process n[Anh() - Ah(-)] converges to the 
corresponding continuous process with the sampling interval going to zero at a specific rate. 
In this set-up, the loss of information due to sampling (say, in terms of the mean squared 
error) can also be studied. 

The asymptotic approach used here is not a competitor of that used by Arjas (1985). His 
approach of letting the observation time go to infinity is motivated by a desire to process the 
data in real time and is suitable for regression models, where information tends to 
accumulate with time. We believe that both of these approaches will be useful in analyzing 
real data in a somewhat complementary manner. 
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